If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-50x^2+35x+99=0
a = -50; b = 35; c = +99;
Δ = b2-4ac
Δ = 352-4·(-50)·99
Δ = 21025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21025}=145$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-145}{2*-50}=\frac{-180}{-100} =1+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+145}{2*-50}=\frac{110}{-100} =-1+1/10 $
| -5x-8+9x=-32 | | -15-7x=20 | | -3×9r=3 | | x(x+6)=(x+3)(x+3) | | 13=5x-17 | | 13=g/2–9 | | 7z+9z=-z-8-3z | | x,4=7 | | 120=-4/5x+25 | | 175=7+8(4n+1) | | 8-2n-5n=n+2 | | 46-m=4 | | 56=4×w | | 9-4×1÷5(y-3)=1 | | y+1.7=7.21 | | x+(×/3)=28 | | 1=1+5m-5m | | 2y^2-21y-11=0 | | 7(x-1)-5=-6(-4x+1)-5x | | (n–3)=(n–5) | | 9-4c+10=-15 | | -8(u+1)=-6u-28 | | 12=-3x+4 | | -8y+3(y-6)=22 | | y-1+17=23 | | 0.02x=x= | | 1.45=o.99 | | 14-(x+5)=3(x=9)-10 | | 140=1/2(8(9+b) | | 0,25y-(8-0.75y)=12 | | f/3+8=12 | | 33=8+w/5 |